Live Imaging of Axolotl Digit Regeneration Reveals Spatiotemporal Choreography of Diverse Connective Tissue Progenitor Pools
نویسندگان
چکیده
Connective tissues-skeleton, dermis, pericytes, fascia-are a key cell source for regenerating the patterned skeleton during axolotl appendage regeneration. This complexity has made it difficult to identify the cells that regenerate skeletal tissue. Inability to identify these cells has impeded a mechanistic understanding of blastema formation. By tracing cells during digit tip regeneration using brainbow transgenic axolotls, we show that cells from each connective tissue compartment have distinct spatial and temporal profiles of proliferation, migration, and differentiation. Chondrocytes proliferate but do not migrate into the regenerate. In contrast, pericytes proliferate, then migrate into the blastema and give rise solely to pericytes. Periskeletal cells and fibroblasts contribute the bulk of digit blastema cells and acquire diverse fates according to successive waves of migration that choreograph their proximal-distal and tissue contributions. We further show that platelet-derived growth factor signaling is a potent inducer of fibroblast migration, which is required to form the blastema.
منابع مشابه
Regeneration of Soft Tissues Is Promoted by MMP1 Treatment after Digit Amputation in Mice
The ratio of matrix metalloproteinases (MMPs) to the tissue inhibitors of metalloproteinases (TIMPs) in wounded tissues strictly control the protease activity of MMPs, and therefore regulate the progress of wound closure, tissue regeneration and scar formation. Some amphibians (i.e. axolotl/newt) demonstrate complete regeneration of missing or wounded digits and even limbs; MMPs play a critical...
متن کاملOrganization of connective tissue patterns by dermal fibroblasts in the regenerating axolotl limb.
A set of tendons, aponeurotic sheets and retinaculae, which transduce muscle action from proximal limb levels to flexion and extension of the digits, is found in limbs of many vertebrates. This set of structures, here termed the digit tendon complex, is described for the axolotl forelimb. We show that the complex forms autonomously in muscleless axolotl limb regenerates produced from a cuff of ...
متن کاملLive Monitoring of Blastemal Cell Contributions during Appendage Regeneration
The blastema is a mass of progenitor cells that enables regeneration of amputated salamander limbs or fish fins. Methodology to label and track blastemal cell progeny has been deficient, restricting our understanding of appendage regeneration. Here, we created a system for clonal analysis and quantitative imaging of hundreds of blastemal cells and their respective progeny in living adult zebraf...
متن کاملPseudotyped retroviruses for infecting axolotl in vivo and in vitro.
Axolotls are poised to become the premiere model system for studying vertebrate appendage regeneration. However, very few molecular tools exist for studying crucial cell lineage relationships over regeneration or for robust and sustained misexpression of genetic elements to test their function. Furthermore, targeting specific cell types will be necessary to understand how regeneration of the di...
متن کاملA clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors.
Complete regeneration of the spinal cord occurs after tail regeneration in urodele amphibians such as the axolotl. Little is known about how neural progenitor cells are recruited from the mature tail, how they populate the regenerating spinal cord, and whether the neural progenitor cells are multipotent. To address these issues we used three types of cell fate mapping. By grafting green fluores...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 39 شماره
صفحات -
تاریخ انتشار 2016